Nikita Frolov

nf@mkmks.org github.com/mkmks linkedin.com/in/mkmks +46 73 571 39 89

Summary

I am an apprentice researcher in the area of programming language design. The bulk of ideas fundamental to my work comes from type theory and category theory. I am also versed in computer architecture, information security and human linguistics. I seek a position in industry where my academic background can be an advantage.

Employment

2012-now PhD student, Functional Programming Group Chalmers University of Technology, Gothenburg, Sweden Funded by the Resource-Aware Functional Programming project (RAWFP) Thesis advisor: John Hughes

My research is aimed at giving the functional programmer the control over low-level aspects of execution, so writing functional programs for embedded hardware becomes a reality. In particular, I work on bringing the well-known *tiling optimizations* to the category theory-inspired *recursion schemes*. To formalise the connection between tiled and untiled recursive programs, I rely on the concepts of datatype *ornaments* and *transporting* functions across ornaments.

I have completed the requirements for the *licentiate* degree. I have also completed the graduate course requirements and the teaching duties of my doctoral program. I expect to graduate by the end of 2017.

2011 Research assistant, Language Technology Group Chalmers University of Technology, Gothenburg, Sweden Funded by the Multilingual Online Translation project (MOLTO) Project leader: Aarne Ranta

I have implemented a number of improvements for the Russian resource grammar in the Grammatical Framework, including support for partitives and ordinals.

2009 Freelance developer

I have implemented a connector between the OpenCA phone softswitch and SORM, the Russian lawful interception system. The connector would work by running a man-in-the-middle attack on the user traffic. (Python, Twisted, SIP/RFC3261, RTP/RFC3550)

2005-2009 Developer Demos Company Ltd., Moscow, Russia

- I have maintained a custom SIM/USIM-card lifecycle management solution for a large mobile operator (more than 100M active subscribers). (Spring, Hibernate)
- I have prototyped a number of applications for the nCipher/Thales hardware security modules: SIM/USIM-card key generation and storage procedures, GOST cryptographic algorithms, a host-side PKCS11 API wrapper (C)
- I have extended the RSA MobileID authentication server with the support for GOST algorithms and a CT-KIP implementation. (Java)

Education

2012-2016 Licentiate in Computer Science

Chalmers University of Technology, Gothenburg, Sweden

A licentiate degree is awarded in Sweden and Finland for a dissertation that is roughly one half of a doctoral dissertation. In my licentiate dissertation, I have built a type-theoretical model of *tiled container traversals*. Tiling is an optimization aimed at improving locality of memory accesses. I have demonstrated that this optimization can be beneficial for functional programs by implementing it as a part of a compiler for a simple functional language.

2009-2011 M.Sc. in Computer Engineering Chalmers University of Technology, Gothenburg, Sweden

My thesis work presented an approach to the *phase sequencing problem* based on expressing the scheduling problem as a set of mutually independent constraints and solving them with a SAT solver. To evaluate the approach, I created a compiler for FlexCore, an embedded processor with reconfigurable architecture. The compiler was built on top of a scheduling constraints DSL embedded into Haskell.

2003-2008 **B.Sc. in Electrical Engineering** Bauman Moscow State Technical University, Moscow, Russia

Publications

2016 Laying Tiles Ornamentally: An approach to structuring container traversals N. Frolov

Licentiate thesis Department of Computer Science and Engineering Chalmers University of Technology and Gteborg University ISSN 1652-876X, No. 161L, Dec. 2016 http://publications.lib.chalmers.se/publication/246117

2011 A SAT-based Compiler for FlexCore

N. Frolov, M. Sjlander, P. Larsson-Edefors, S. A. McKee
Technical report
Department of Computer Science and Engineering
Chalmers University of Technology and Gteborg University
ISSN 1652-926X, No. 11-04, Apr. 2011
http://publications.lib.chalmers.se/publication/143872-a-sat-based-compiler-for-flexcore

Talks

2016	Laying Tiles Ornamentally
	28th Symposium on Implementation and Application of Functional Languages (IFL)
	August 31, 2016, KU Leuven, Belgium
2015	Decomposing Schedules of Recursive Programs
	13th Symposium on Trends in Functional Programming (TFP)
	June 4, 2015, INRIA Sophia Antipolis, France
2011	Declarative, SAT-solver-based Scheduling
	for an Embedded Architecture with a Flexible Datapath
	11th Swedish System-on-Chip Conference (SSoCC)

May 2, 2011, Varberg, Sweden

Teaching

I have been a teaching assistant responsible for conducting practice sessions and grading weekly assignments and final exams in several courses given as part of B.Sc. and M.Sc. programs in computer science at Chalmers:

- Parallel functional programming (2012-2016, M.Sc.-level)
- Algorithms (2015-2016, M.Sc.-level)
- Cryptography (2013-2015, M.Sc.-level)
- Programming paradigms (2012-2015, B.Sc.-level)
- Data structures (2012, B.Sc.-level)

I have developed and delivered two lectures for the parallel functional programming course: an introduction to the GHC runtime system (thread scheduling, garbage collection, IO) and an introduction to cache hierarchies (general concepts of CPU caches, cache-aware and cacheoblivious algorithms). I have given the former lecture during three instances (2014-2016) and the latter during four instances of the course (2013-2016).

Skills

My day-to-day tools are the **Agda** proof assistant and the $\[\]$ ETEX document preparation system. To produce programs that can not only be typechecked and typeset but also benchmarked, I use **Haskell** (in its GHC variety) and **C**.

I remember enough **VHDL** to appreciate the existence of languages that compile into it. I remember enough **Java** to teach the standard data structures and algorithms courses. I have

struggled enough with **Python** to wish never to implement network protocols in an untyped language again.

Other programming languages I have had encounters with include Coq, Scala, C++, Emacs Lisp and the Nix package description language. I have not done any major work in those though.

Other

I am a Swedish and a Russian citizen.

Besides being fluent in English, Swedish and Russian, I can get by in German and French.